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This document provides supplementary information to “DiffuserCam: lensless single-
exposure 3D imaging,” https://doi.org/10.1364/OPTICA.5.000001. We provide details on the 
properties of the diffuser used in our prototype DiffuserCam system. Based on these properties, 
we validate the field-of-view equation presented in the main text and quantify the similarity 
between PSFs at different locations in the volume. We also provide ad-ditional details about 
the algorithm including an explanation of cropping in the forward model, a derivation of the 
ADMM algorithm used for solving for 3D volumes, and additional details on the 
implementation of this algorithm. Finally, we compare two different regularizers and 
demonstrate that the ADMM algorithm is computationally efficient for our problem.

1. SYSTEM PROPERTIES

A. Diffuser Properties

To quantify the properties of our diffuser, we used an LED array
microscope to capture a quantitative Differential Phase Contrast
(DPC) [1] image of the diffuser phase. After using the index
of refraction of the diffuser material (polycarbonate, n = 1.58)
to convert phase into surface shape, we show in Fig. S1 the
measured relative height profile of a small patch on our 0.5◦

diffuser. The surface slope of the diffuser is Gaussian distributed
with average magnitude of 0.7◦. The deflection angle at the
diffuser surface has a HWHM angle of 0.25◦, which matches the
manufacturer specifications. The maximum deflection angle is
β = 0.5◦, as shown in the histograms in Fig. S1.

To illustrate the overall size and spread of the caustic PSF
patterns in our system, we show in Fig. S2 the full PSF patterns
captured for the closest and farthest axial distances used. Note
that the closest axial distance is the one at which the caustic
pattern just fills the sensor, and therefore depends on the aper-
ture size. The caustics contain high-frequency information in all
orientation directions, as evidenced by the sharp lines randomly
spread in all directions. This facilitates good resolution at all
depths and a highly structured PSF for deconvolution. Our cali-
bration point source is a 30µm pinhole illuminated by a planar
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Fig. S1. Left: The thickness profile of a small patch of our dif-
fuser, as measured by quantitative Differential Phase Contrast
(DPC) microscopy. Below is a cut-line plot along the dashed
line. Right: Histograms of the diffuser slope (top) and the
deflection angle of a ray normally incident on the diffuser (bot-
tom). The maximum deflection angle is about 0.5◦.

RGB LED array (λ = 630 nm, 515 nm, and 460 nm, ∆λ = 20 nm,
35 nm, and 25 nm, respectively) placed behind a 80◦ diffuser.
As shown in [2], the caustics from narrowband and broadband
sources are indistinguishable, and we do not find problems with
using narrowband calibration.

http://dx.doi.org/10.1364/optica.XX.XXXXXX
https://doi.org/10.1364/OPTICA.5.000001
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Fig. S2. Un-cropped, false color sensor measurements of PSFs for the closest and farthest planes used in our reconstructions. These
were measured by placing a point source on-axis at the front and back of the volume. The closest PSF has a caustic pattern that fills
the sensor. Both PSFs have been contrast stretched from 0 to 30% of the max value for visibility.

B. Field-of-View Validation
In the main text in Sec. 3A, we derive the field-of-view (FoV) of
our system to be

FoV = β + min[αc, tan−1( l+w
2d )], (S1)

where the FoV can be limited by either the geometry of the
system (l, w, d) or by the angular acceptance of the pixels (αc).
Here l is the sensor size, w is the aperture size, and d is the
distance between the diffuser and the sensor. In our system,
d = 8.9 mm. In the x-direction, lx = 16.6 and wx = 7.5 mm; the
y-direction values are ly = 14 mm and wy = 5.5 mm.

The angular response of the sensor, shown in Figure 3 of
the main text, was measured by placing a white LED at optical
infinity and rotating the sensor both vertically and horizontally.
The average intensity measured at each angle was normalized
by the on-axis measurement. We define the angular cutoff, αc,
as the angle at which the response falls to 20% of its on-axis
value. For our camera, the x and y cutoffs are αcx = 41.5◦ and
αcy = 30◦, respectively. Finally, from our diffuser measurements
in Fig. S1, we find that the maximum deflection angle of the
diffuser, β, is 0.5◦.

Plugging these values into the FoV equation yields a FoV of
42◦ in x and 30.5◦ in y, where the limiting factor is the angular
acceptance. Figure S3 shows the recovery of a large, evenly
illuminated scene at optical infinity. The angular extent visible
in the reconstruction matches our predicted FoV.

C. PSF similarity
We quantify the similarity of the PSF versus shift and scale
across the volume to validate our claim that the resulting un-
derdetermined matrix has good properties for sparse recovery
techniques. Figure S4 shows the autocorrelation of the PSFs ac-
quired at the minimum and maximum object distances, as well
as the cross-correlation between the two. Notice that the PSF
autocorrelation maintains a sharp central peak and relatively
low sidelobes for all depths within our calibration volume. This
means that a shifted version of the PSF is roughly 50% similar
to the un-shifted version. Importantly, the cross-correlation has

no values greater than 50%, meaning that the scaled caustics are
dissimilar to any shift of the unscaled caustics. To quantify this
further, we plot the inner product between the central image in
the calibration stack, corresponding to the orange dotted line in
Fig. S4b, with all other images in the stack. We again observe
a relatively sharp peak and side lobes on the order of 50% in
the axial direction. This validates our claim that the caustics
produced by any point in the volume are unique.

2. ALGORITHM DETAILS

A. Cropping in Forward Model
In Eq. (4) of the main text, we show that our forward model is a
sum of convolutions followed by a crop operation. We would
like to emphasize that the crop operation is due directly to the
physical cropping caused by the finite sensor size. Consider an
off-axis point source, as shown in Fig. S5a. In the experimental
measurement from the source (Fig. S5b), half of the on-axis PSF
is cut off by the finite size of the sensor. If we do not take this
into account in our forward model, our estimate of the measure-
ment would look like Fig. S5c, which is not physical due to the
circular boundary conditions. Including the crop operation in
our forward model fixes the problem, creating estimates of the
measurement that look like the experimental data (Fig. S5d).

B. Derivation of ADMM Inverse Algorithm Formulation
As stated in the main paper in Section 1B, the problem we seek
to solve is:

v̂ = argmin
v≥0

1
2‖b−Hv‖2

2 + τ‖Ψv‖1. (S2)

We transform this into the equivalent problem:

v̂ = argmin
w,u,v

1
2‖b−Dv‖2

2 + τ‖u‖1 + 1+(w)

s.t. v = Mv

u = Ψv

w = v,

(S3)
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Fig. S3. Validation of FoV calculations: based on the measured angular pixel response, αc, and maximum diffuser deflection angle,
β, we calculate our theoretical FoV to be 42◦ in x and 30.5◦ in y. This matches our recovered FoV in a scene at optical infinity. The
inset shows the raw data.
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Fig. S4. Correlation of various caustics patterns. (a) The caustics at a given depth are unique over shifting, and caustics from two
different depths are not similar to each other, even under translation. The solid black curve is a slice of the autocorrelation of a
PSF for a point source near the front of the volume, and the dotted black line is the autocorrelation for a far away point source’s
PSF. The solid blue line is the cross-correlation between the two. (b) The inner product of the PSF from the middle of the volume
(corresponding to the orange dotted line) with all other PSFs at varying depths. In both (a) and (b), shifting or scaling the caustics
leads to an inner product of approximately 0.5 compared to a peak value of 1.
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Fig. S5. The crop operation in the forward model accounts
for the finite sensor size. (a) Off-axis point source, size exag-
gerated for visibility. (b) Experimental measurement from
the source. (c) Simulated measurement without crop opera-
tion. Since the convolution has circular boundary conditions,
the PSF wraps around to the opposite side of the sensor. (d)
Simulated measurement with crop operation matches the ex-
perimental measurement.

where 1+(·) is the nonnegativity barrier function, which returns
0 when the argument is nonnegative, and ∞ when the argument
is negative.

In order to compute the ADMM updates efficiently, we will
see that it is useful for both M and Ψ to represent 3D convolu-
tions. Clearly, when Ψ is the identity matrix, this holds. Addi-
tionally, when Ψ is the 3D finite difference operator, it can be
expressed as a concatenation of 3D convolutions with the finite
difference kernel, oriented in each of the 3 directions. In order
to express M as a 3D convolution, we must choose the diagonal

operator, D, such that Eq. (4) can be written as D
(

m
(x,y,z)
∗ v

)
,

where m is a 3D kernel, and
(x,y,z)
∗ represents convolution over

the variables, x, y, and z. To accomplish this, we use the fact
that a sum of 2D convolutions between an object, v(x, y, z), and
a stack of 2D kernels, h(x, y; z), can be expressed as the first
2D (x, y)-slice in the 3D convolution between the object and a
z-flipped version of the kernel stack:

∑
z

h(x, y; z)
(x,y)
∗ v(x, y, z) =

[
h(x, y;−z)

(x,y,z)
∗ v(x, y, z)

] ∣∣∣∣
z=0

.

(S4)
For proof, we can take the right hand side of Eq. (S4) and

apply the definition of discrete 3D convolution directly:

[
h(x, y;−z)

(x,y,z)
∗ v(x, y, z)

] ∣∣∣∣
z=0

=
Nz−1

∑
z′=0

Ny−1

∑
y′=0

Nx−1

∑
x′=0

v(x′, y′, z′)h(x− x′, y− y′; z′ − z)|z=0

=
Nz−1

∑
z′=0

v(x, y, z′)
(x,y)
∗ h(x, y; z′).

Using this identity, we can write the forward operator in Eq.
(4) as:

C ∑
z

[
v
(
−x′

m
,
−y′

m
, z
)

(x,y)
∗ h

(
x′, y′; z

)]
=C

[
v
(
−x′

m
,
−y′

m
, z
)

(x′ ,y′ ,z)
∗ h

(
x′, y′;−z

) ∣∣∣∣
z=0

]
=D

[
v
(
−x′

m
,
−y′

m
; z
)

(x′ ,y′ ,z)
∗ h

(
x′, y′;−z

)]
,

where D is a diagonal operator that simultaneously performs
the 2D crop, C, as well as selecting the z = 0 slice. Effectively,
D comprises taking the center crop of the first layer of the 3D
array resulting from the circular 3D convolution of h(x′, y′;−z)
with v. Note that our definition of z is as a parameter indexing
each slice in the 3D array h, not the physical distance to each
slice. We assume circular boundary conditions for h, such that
h(·, ·;−z) = h(·, ·; Nz − z) is a z-stack that is flipped in the z-
direction.

Using Eq. (S4), we present an efficient method for solving
Eq. (S3). We begin by transforming Eq. (S3) into an uncon-
strained augmented Lagrangian form, and consider the saddle-
point problem:

max
ξ,η,ρ

[
min

u,v,w,v
1
2 ‖b−Dv‖2

2 +
µ1
2

∥∥∥Mv− v + ξ
µ1

∥∥∥2

2

+ τ‖u‖1 +
µ2
2

∥∥∥Ψv− u +
η
µ2

∥∥∥2

2

+ 1+ (w) +
µ3
2

∥∥∥v− w +
ρ

µ3

∥∥∥2

2

]
.

To solve the above equation using ADMM, we first derive
the optimality conditions for each primal variable, assuming the
others are fixed:

uk+1 ← argmin
u

τ‖u‖1 +
µ2
2

∥∥∥Ψvk − u +
ηk

µ2

∥∥∥2

2

vk+1 ← argmin
v

1
2

∥∥∥bk −Dv
∥∥∥2

2
+

µ1
2

∥∥∥Mvk − v + ξk

µ1

∥∥∥2

2

wk+1 ← argmin
w

1+ (w) +
µ3
2

∥∥∥vk − w +
ρk

µ3

∥∥∥2

2

vk+1 ← argmin
v

µ1
2

∥∥∥Mv− vk+1 + ξk

µ1

∥∥∥2

2

+
µ2
2

∥∥∥Ψv− uk+1 +
ηk

µ2

∥∥∥2

2

+
µ3
2

∥∥∥v− wk+1 +
ρk

µ3

∥∥∥2

2
.

And update each dual variable as

ξk+1 ←ξk + µ1(Mvk+1 − vk+1)

ηk+1 ←ηk + µ2(Ψvk+1 − uk+1)

ρk+1 ←ρk + µ3(vk+1 − wk+1).

The final result is the algorithm outlined in Sec. 2C of the main
text.
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b ADMM, 3DTV, 2048x2048x128 (26 mins)a FISTA, ℓ1, 2048x2048x64 (4 hours)

Fig. S6. `1 vs 3DTV regularization with different algorithm implementations. (a) Max z-projection of FISTA reconstruction using `1
(soft thresholding on the volume after each iteration). This took 4 hours to run on a Titan X GPU using MATLAB. The soft thresh-
olding has erased some key features. (b) Max z-projection of reconstruction using ADMM with a 3DTV prior. Clearly the result is
better, largely due to a better sample-prior match. This reconstruction also required 10x less time to obtain.

C. Implementation details
Evaluation of the cropped discrete convolution at a single depth,

C
[

h(x′, y′; z)
(x′ ,y′)
∗ v(−x′/m,−y′/m, z)

]
(x′, y′),

is done by zero padding h(x′, y′; z) to twice its original size
in each dimension, then using FFT-based convolution. This
ensures that any aliasing artifacts introduced by the circular
boundary conditions of the FFT will fall outside the sensor area,
causing such artifacts to be removed by the cropping, C(·). Note
that this requires our variable, v, to be approximately twice as
many samples in each dimension as our sensor measurement.
Interestingly, it is possible for useful information to lie anywhere
within this extended FoV. In our prototype, the angular falloff
of the sensor means that measurements in the extended region
are attenuated too much to be useful. However, a future system
using different geometry could leverage this effect to gain even
more useful samples in the final reconstruction. In operator
notation, the convolution can be evaluated as

CF−1{ [FPh(x, y; z)] · [Fv(x, y, z)]
}

(S5)

where F is the 2D FFT, · is point-wise multiplication, and P is
the zero-padding operator.

D. `1 vs 3D Total Variation
To improve the quality of reconstruction, we use the 3D Total
Variation (TV) penalty parameter. This is inefficient to compute
as part of a projected gradient technique, because the proximal
operator for the TV norm must be computed iteratively. On
volumes of the size used here, this requires minutes per outer-
loop iteration. Of the priors considered in this work, only native

sparsity and nonnegativity are feasible when using projected
gradient methods. To demonstarate the benefit of using ADMM,
we show in Fig. S6 the result from `1 regularized FISTA after
running for 4 hours on a GPU using MATLAB compared to our
algorithm with 3DTV regularization for 20 minutes. Not only
does our algorithm run much faster, but it produces an image
with more detail. In particular, note that the `1 regularization
has erased the numbers and eroded the bars, whereas 3DTV
runs an order or magnitude faster and uses a more sophisticated
prior, resulting in categorically better performance.
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